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Abstract—A large variety of a-selenoglycosides, including alkyl and aryl selenoglycosides, selenoglycosyl amino acid and selenodi-
saccharide have been synthesized in a stereoselective manner. The key precursor of a-anomeric selenolate anion was designed as p-
methylbenzoyl selenoglycoside, which was synthesized by the reaction of B-glycosyl chloride with potassium p-methylselenobenzo-
ate. Upon the action of piperazine or methylhydrazine in the presence of Cs,CO3, the acyl selenoglycoside produced an anomeric
selenolate anion, which reacted in situ with various electrophilic counterparts to yield a-selenoglycoside.

© 2006 Elsevier Ltd. All rights reserved.

Recently, the broad spectrum of use of aryl selenoglyco-
sides as glycosyl donors has been demonstrated.! Aryl
selenoglycoside donors can be activated in a chemoselec-
tive manner, and thioglycoside acts as its orthogonal
coupling partner; hence, using aryl selenoglycosides in
the synthesis of certain products appears to be an attrac-
tive option. Moreover, Yamago’s group has extended
the applicability of the selenoglycoside donor to iterative
glycosylation, which successfully delivered an eliciter
active heptasaccharide.> On the other hand, Pinto’s
group revealed that selenodisaccharides are glycosidase
resistant, suggesting the potential of selenoglycoside as
an alternative type of pseudoglycoside for carbo-
hydrate-based drug development.® Further, taking into
the account the successful use of selenium-incorporated
nucleotides and peptides for multiwavelength anoma-
lous dispersion (MAD) phasing for X-ray crystallogra-
phy,* we have been particularly focusing on the
unexplored potential of selenoglycosides as probes in
the structural investigation of carbohydrate—protein
complexes; the results of such an investigation will pro-
vide important information about the molecular basis
underlying cell—cell, cell-virus, and cell-pathogen recog-
nition mediated by carbohydrates.
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By taking a step further forward realizing the complete
potential of the contribution of selenoglycoside to glyco-
science, we set an initial aim to establish a synthetic
method capable of designing a large variety of selenogly-
cosides. Previously, we had reported a stereoselective
method for gluco-type B-selenoglycoside synthesis that
features the coupling reaction of its electrophilic coun-
terpart and PB-selenolate anion produced in situ from
B-p-methylbenzoyl selenoglycoside in a chemoselective
manner.’ By this method, a wide spectrum of selenogly-
cosides linked to aryl, alkyl, amino acids, and monosac-
charides were successfully synthesized. In this study, we
demonstrate that the principle of our selenoglycosida-
tion can be successfully applied to the synthesis of o-
selenoglycoside.®

To obtain a-p-methylbenzoyl selenoglycoside, we first
examined the synthesis of the key intermediate B-glycosyl
chloride. Among our various attempts at f-chlorination,
Ibatullin’s method provided high yields of tetraacetyl-
glucosyl and galactosyl chlorides; thus, the pentaacetate
of glucose and galactose were reacted with PCls in the
presence of BF5-OEt, to yield 1a and 1b, respectively.’

Next, a-p-methylbenzoyl selenoglycoside was synthesized
(Table 1). In a previous study on a-selenoglycoside synthe-
sis,> B-p-methylbenzoyl selenoglycosides were successfully
produced by the S\2 reaction of B-bromide and potassium
p-methylselenobenzoate under monophasic and biphasic
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Table 1. Examination of the synthesis of o-p-methylbenzoyl selenoglycosides
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1aR'=H, R2= OAc 3aR'=H,R?=0Ac O
1b R' = OAc, R =H 3bR'=0OAc, R2=H
Entry B-Cl Conditions® Solvent Time (h) Product Yield (%)
1 la A DMF 2 3a 46
2 la A Pyr 3 3a 34
3 la A Diox 5.5 3a 11
4 la B DMF 7 3a 0
5 la C CH,Cl, 4 3a 0
6 1b A DMF 3 3b 65

Diox = 1,4-dioxane.

#(A) 18-crown-6 (3.0 equiv), rt; (B) "BuyNCl (1.0 equiv), rt; (C) "BuyNSO4H (2.0 equiv), 1 M Na,COs aq, rt.

conditions. In contrast, the biphasic reaction of f-chloride
and potassium p-methylselenobenzoate in the presence of
TBAHS did not yield the desired product. The monopha-
sic reaction yielded a complex mixture that contained o-
and B-isomers and unidentified products.® From this mix-
ture, a single a-isomer 3a was obtained in a 46% yield by
silica gel column chromatography and recrystallization
(entry 1). Although we have examined the in situ anomer-
ization method and the ethereal solvent-assisted a-seleno-
glycosidation, the o-products were not satisfactory
(entries 2-5). Considering these results, the corresponding
a-galactosyl selenoglycoside 3b was prepared under simi-
lar conditions for entry 1 in a moderate yield (entry 6)."
The o-anomeric configuration of selenoglycosides 3a
and 3b was supported by the doublet signal of the C1 pro-
ton at 6.40 and 6.46 ppm with a coupling constant of
52Hz (J;,) in "H NMR spectra, respectively.

The available a-acyl selenoglycosides were reacted with
electrophilic coupling partners* (Table 2). As anticipated,

T Experimental procedure of 3b synthesis: Potassium p-meth-
ylselenobenzoate 2 (1.29 g, 4.08 mmol) was added to a solution of
compound 1b (500 mg, 1.36 mmol) and 18-crown-6 (1.08 g,
4.08 mmol) in degassed DMF (5.0 mL) under an argon atmosphere.
The mixture was stirred for 3h at ambient temperature (TLC
monitoring; EtOAc-toluene = 1:3). The reaction mixture was
extracted twice with EtOAc, and the organic layer was washed with
water and brine, dried over Na,SOy, and co-evaporated with toluene
in vacuo. The residue was purified by column chromatography on
silica gel (EtOAc-toluene = 1:9) and recrystallized from diethyl ether
and n-hexane to afford 3b as a pink needle (464 mg, 65%).

YTypical procedure of o-selenoglycosidation (the case of entry 8):
Cs,CO; (76.2 mg, 234 umol) and piperazine (12.1 mg, 140 pmol) were
added to a solution of compound 3a (62.1 mg, 117 pmol) in degassed
DMF (0.5mL) under an argon atmosphere, and successively a
solution of compound 13 (352 pmol) in degassed DMF (1.0 mL) was
added via cannula. The mixture was stirred for 1 min at ambient
temperature (TLC monitoring; EtOAc-toluene = 1:3). The reaction
mixture was extracted twice with EtOAc, and the organic layer was
washed with 2 M HCI, water, satd Na,CO; aq and brine, dried over
Na,SO,, and co-evaporated with toluene in vacuo. The residue was
purified by column chromatography on silica gel (EtOAc-tolu-
ene = 1:15) to afford 14 (99.9 mg, 90%).

the a-acyl selenoglycoside smoothly reacted with pipera-
zine in the presence of Cs,CO; to produce an anomeric
selenolate anion that in turn reacted in situ with a cou-
pling partner to yield the corresponding a-selenoglyco-
side. In contrast, o-acyl selenolate could not be
produced in the absence of piperazine to recover quanti-
tative amount of a-acyl selenoglycoside and coupling
partner. In a previous paper, we have reported that piper-
azine has been used as the main activator with Cs,COs;
methylhydrazine was used as the stronger activator for
comparison. In all events, the coupling reactions termi-
nated within 1 min regardless of the type of amine. Con-
sequently, in entries 1-5, p-methylbenzoyl group was
successfully replaced with alkyl and aryl groups, thus giv-
ing high yields of compounds 4-8. As expected, tosylated
serine derivative 9° functioned as a suitable electrophilic
coupling partner to give a-linked selenocysteinyl galacto-
side 10'%in an 85% yield without racemization. For seleno-
disaccharide synthesis, 6-iodo-D-fucose derivative 11,
4-O-triflyl galactoside 13, and 4-O-triflyl glucoside 15
were employed as coupling partners. As a result,
selenodisaccharide sequences Glcpa(1—6)Galp (12),
Glepa(1—4)Glep (14), and Galpo(1—4)Galp (16) were
produced in high yields. Compounds 14 and 16 are the
first examples of synthesized a-selenoglycoside that links
to the carbon in the sugar ring. During all the reactions,
the stereochemistry of selenoglycoside linkage was com-
pletely retained, thereby exclusively producing a-ano-
meric products. The configuration of the newly formed
selenoglycosides was confirmed by 'H NMR spectra
(J12=4.6-5.7 Hz). Additionally, 7Se NMR spectra
demonstrated that the resonance of a-amoneric selenium
ranged from 152.3 to 327.1 ppm.

In the previous paper on B-selenoglycoside synthesis, we
have reported a special case of the formation of asym-
metric diselenodisaccharide and triacetyl glucal during
the reaction of B-p-methylbenzoyl selenoglucoside with
an electrophilic sugar partner.> We have rationalized
that this was attributable to the antielimination of sele-
nium and acetoxy anion from the corresponding boat
conformer. To confirm the reaction mechanism, - and
a-p-methylbenzoyl selenoglycosides (12 and 3a) were re-
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Table 2. a-Selenoglycoside formation

electrophile (2.0 eq)
amine (1.2 eq)
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OAc
TfQ 0} AcO
9 3b ACO&S/ OSE 15 Se _oac 16 89
Piperazine AcO OSE
OAc

MP = p-methoxyphenyl, SE = 2-(trimethylsilyl)ethyl.

acted with piperazine in the presence of Cs,CO3; under
aerobic atmosphere, respectively (Scheme 1). The main
product of the a-acyl selenoglycoside reaction was the
corresponding symmetric diselenide 19'! without glucal
formation, while the main product of the B-acyl seleno-
glycoside was glucal 17 (49%) and symmetric diselenide
18°0 (51%). In addition, the corresponding asymmetric
diselenodisaccharides were not formed during the a-sele-

noglucosidation conducted at entries 7 and 8 shown in
Table 2. This result strongly supports our proposed
self-decomposition mechanism of B-glucosyl selenolate
anion.

In conclusion, we have demonstrated that a-selenolate
anion could be produced in situ from the corresponding
p-methylbenzoyl selenoglycoside, which reacted rapidly
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Scheme 1. Experiment on degradation of a- and B-glucosyl selenolate anion in the absence of an electrophile. Tol = p-methylbenzoyl.

with various electrophiles to produce a large variety of
a-selenoglycosides.
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